Рабочая программа по геометрии в 7 классе
Пояснительная записка
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Цели изучения курса геометрии в 7 классе: развитие у учащихся пространственного воображения и логического мышления путём систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции.
Задачи курса:
- создать условия для овладения системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.
- способствовать интеллектуальному развитию, формированию качеств личности, необходимых человеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формировать представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- создать условия для воспитания культуры личности, отношения к геометрии как к части общечеловеческой культуры, понимания значимости геометрии для научно-технического прогресса.
Рабочая программа составлена на основании:
Фундаментального ядра содержания общего образования;
требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учетом преемственности с примерными программами для начального общего образования по математике;
Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 года № 1897;
Федерального перечня учебников, рекомендованных (допущенных) Министерством образования к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 31.03.2014 г. № 253;
Федерального базисного учебного плана и примерных учебных планов для общеобразовательных учреждений РФ, реализующих программу общего образования, 2004 г.
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии отводится 2 часа в неделю, всего 70 часов в год. Согласно годовому календарному учебному графику учебный год длится 35 учебных недель, поэтому данная программа рассчитана на 70 часов по 2 часа неделю.
Содержание учебного предмета
Геометрические фигуры
Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.
Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Углы с соответственно параллельными и перпендикулярными сторонами. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.
Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.
Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема синусов и косинусов. Замечательные точки треугольника.
Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.
Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.
Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.
Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей.
Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.
Измерение геометрических величин
Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.
Периметр многоугольника.
Длина окружности, число π; длина дуги окружности.
Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.
Решение задач на вычисление и доказательство с использованием изученных формул.
Координаты
Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.
Векторы
Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.
Элементы логики
Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Понятие о равносильности, следовании, употребление логических связок если ..., то в том и только в том случае, логические связки и,или
Геометрия в историческом развитии
От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построения с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Софизм, парадоксы.
Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.
Планируемые результаты освоения программы
Изучение геометрии по данной программе способствует формированию у учащихся личностных, метапредметных, предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта основного общего образования.
Личностные результаты:
1)воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
2)ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
3)осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
4)умение контролировать процесс и результат учебной и математической деятельности;
5)критичность мышления, инициатива, находчивость, активность при решении математических задач.
Метапредметные результаты:
1)умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
2)умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
3)умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
4)умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
5) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;
6) компетентность в области использования информационно-коммуникационных технологий;
7) первоначальные представления об идеях и о методах геометрии как об универсальном языке науки и технике, о средстве моделирования явлений и процессов;
8)умение видеть геометрическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
9)умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
10)умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.
11)умение выдвигать гипотезы при решении задачи и понимать необходимость их проверки;
12)понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Предметные результаты:
1)осознание значения геометрии для повседневной жизни человека;
2)представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
3)развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования.
4)владение базовым понятийным аппаратом по основным разделам содержания;
5)систематические знания о фигурах и их свойствах;
6)практически значимые геометрические умения и навыки, их применение к решению геометрических и негеометрических задач, а именно:
• изображать фигуры не плоскости;
• использовать геометрический язык для описания предметов окружающего мира;
• измерять длины отрезков, величины углов, вычислять площади фигур;
• распознавать и изображать равные, симметричные и подобные фигуры;
• выполнять построения геометрических фигур с помощью циркуля и линейки;
• читать и использовать информацию, представленную на чертежах и схемах;
• проводить практические расчеты.
Геометрические фигуры
Выпускник научится:
- -пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- -распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- -находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- -оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- -решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- -решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
- -решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
- -овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- -приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- -овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- -научиться решать задачи на построение методом геометрического места точек и методом подобия;
- -приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- -приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
- -использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- -вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- -вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
- -вычислять длину окружности, длину дуги окружности;
- -решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- -решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность:
- -вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- -вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- -приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
- -вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- -использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
- -овладеть координатным методом решения задач на вычисление и доказательство;
- -приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- -приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задан на вычисление и доказательство».
Векторы
Выпускник научится:
- -оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- -находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- -вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
- -овладеть векторным методом для решения задач на вычисление и доказательство;
- -приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».
.Календарно-тематическое планирование